Vertex Algebroids over Veronese Rings
dc.contributor.author | Malikov, F. | |
dc.date.accessioned | 2019-02-16T20:44:18Z | |
dc.date.available | 2019-02-16T20:44:18Z | |
dc.date.issued | 2008 | |
dc.description.abstract | We find a canonical quantization of Courant algebroids over Veronese rings. Part of our approach allows a semi-infinite cohomology interpretation, and the latter can be used to define sheaves of chiral differential operators on some homogeneous spaces including the space of pure spinors punctured at a point. | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. The author would like to thank N. Nekrasov and especially V. Hinich for interesting discussions and for bringing to his attention. The paper was completed at the IHES in Bures-sur-Yvette. We are grateful to the institute for hospitality and excellent working conditions. This work was partially supported by an NSF grant. Special thanks go to V. Gorbounov and V. Schechtman. | uk_UA |
dc.identifier.citation | Vertex Algebroids over Veronese Rings / F. Malikov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2000 Mathematics Subject Classification: 14Fxx, 81R10; 17B69 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/148079 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Vertex Algebroids over Veronese Rings | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 86-Malikov.pdf
- Розмір:
- 393.51 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: