Ricci Flow and Volume Renormalizability

dc.contributor.authorBahuaud, E.
dc.contributor.authorMazzeo, R.
dc.contributor.authorWoolgar, E.
dc.date.accessioned2025-12-04T13:07:50Z
dc.date.issued2019
dc.description.abstractWith respect to any special boundary defining function, a conformally compact asymptotically hyperbolic metric has an asymptotic expansion near its conformal infinity. If this expansion is even to a certain order and satisfies one extra condition, then it is possible to define its renormalized volume and show that it is independent of choices that preserve this evenness structure. We prove that such expansions are preserved under normalized Ricci flow. We also study the variation of curvature functionals in this setting, and as one application, obtain the variation formula d/dtRenV(Mⁿ,g(t)) = −R∫Mⁿ(S(g(t)) + n(n−1))dVg(t), where S(g(t)) is the scalar curvature for the evolving metric g(t), and R∫(⋅)dVg is Riesz renormalization. This extends our earlier work to a broader class of metrics.
dc.description.sponsorshipEB and RM are grateful to Robin Graham for discussions related to this work. The work of EB was supported by a Simons Foundation grant (#426628, E. Bahuaud). The work of EW was supported by an NSERC Discovery Grant RGPIN 203614. RM was supported by the NSF grants DMS-1105050 and DMS-1608223.
dc.identifier.citationRicci Flow and Volume Renormalizability / E. Bahuaud, R. Mazzeo, E. Woolgar // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 21 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.057
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53C44
dc.identifier.otherarXiv: 1607.08558
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210238
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleRicci Flow and Volume Renormalizability
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
057-Bahuaud.pdf
Розмір:
433.1 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: