Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems

dc.contributor.authorSchuch, D.
dc.date.accessioned2019-02-19T13:12:45Z
dc.date.available2019-02-19T13:12:45Z
dc.date.issued2008
dc.description.abstractThe time-evolution of the maximum and the width of exact analytic wave packet (WP) solutions of the time-dependent Schrödinger equation (SE) represents the particle and wave aspects, respectively, of the quantum system. The dynamics of the maximum, located at the mean value of position, is governed by the Newtonian equation of the corresponding classical problem. The width, which is directly proportional to the position uncertainty, obeys a complex nonlinear Riccati equation which can be transformed into a real nonlinear Ermakov equation. The coupled pair of these equations yields a dynamical invariant which plays a key role in our investigation. It can be expressed in terms of a complex variable that linearizes the Riccati equation. This variable also provides the time-dependent parameters that characterize the Green's function, or Feynman kernel, of the corresponding problem. From there, also the relation between the classical and quantum dynamics of the systems can be obtained. Furthermore, the close connection between the Ermakov invariant and the Wigner function will be shown. Factorization of the dynamical invariant allows for comparison with creation/annihilation operators and supersymmetry where the partner potentials fulfil (real) Riccati equations. This provides the link to a nonlinear formulation of time-independent quantum mechanics in terms of an Ermakov equation for the amplitude of the stationary state wave functions combined with a conservation law. Comparison with SUSY and the time-dependent problems concludes our analysis.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). The author wishes to thank G. Reinisch for numerous encouraging and inspiring discussions.uk_UA
dc.identifier.citationRiccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems / D. Schuch // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 22 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 37J15; 81Q05; 81Q60; 81S30
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149040
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleRiccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systemsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
43-Schuch.pdf
Розмір:
281.46 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: