Locally Nilpotent Derivations of Free Algebra of Rank Two

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

In commutative algebra, if δ is a locally nilpotent derivation of the polynomial algebra 𝛫[x₁, …, xd] over a field 𝛫 of characteristic 0 and w is a nonzero element of the kernel of δ, then Δ=wδ is also a locally nilpotent derivation with the same kernel as δ. In this paper, we prove that the locally nilpotent derivation Δ of the free associative algebra 𝛫⟨X, Y⟩ is determined up to a multiplicative constant by its kernel. We also show that the kernel of Δ is a free associative algebra and give an explicit set of its free generators.

Опис

Теми

Цитування

Locally Nilpotent Derivations of Free Algebra of Rank Two / V. Drensky, L. Makar-Limanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 31 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced