On quasiconformal maps and semi-linear equations in the plane

dc.contributor.authorGutlyanskii, V.Y.
dc.contributor.authorNesmelova, O.V.
dc.contributor.authorRyazanov, V.I.
dc.date.accessioned2020-06-10T15:19:24Z
dc.date.available2020-06-10T15:19:24Z
dc.date.issued2017
dc.description.abstractAssume that Ω is a domain in the complex plane C and A(z) is symmetric 2× 2 matrix function with measurable entries, det A = 1 and such that 1/K|ξ|²≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. In particular, for semi-linear elliptic equations of the form div (A(z)∇u(z)) = f(u(z)) in Ω we prove Factorization Theorem that says that every weak solution u to the above equation can be expressed as the composition u = T ◦ ω, where ω : Ω → G stands for a K−quasiconformal homeomorphism generated by the matrix function A(z) and T(w) is a weak solution of the semi-linear equation △T(w) = J(w)f(T(w)) in G. Here the weight J(w) is the Jacobian of the inverse mapping ω⁻¹. Similar results hold for the corresponding nonlinear parabolic and hyperbolic equations. Some applications of these results in anisotropic media are given.uk_UA
dc.identifier.citationOn quasiconformal maps and semi-linear equations in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 161-191. — Бібліогр.: 39 назв. — англ.uk_UA
dc.identifier.issn1810-3200
dc.identifier.other2010 MSC. Primary 30C62, 31A05, 31A20, 31A25, 31B25, 35J61, 35Q15; Secondary 30E25, 31C05, 34M50, 35F45.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/169320
dc.language.isoruuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofУкраїнський математичний вісник
dc.statuspublished earlieruk_UA
dc.titleOn quasiconformal maps and semi-linear equations in the planeuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
02-Gutlyanskii.pdf
Розмір:
285.61 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: