On quasiconformal maps and semi-linear equations in the plane
dc.contributor.author | Gutlyanskii, V.Y. | |
dc.contributor.author | Nesmelova, O.V. | |
dc.contributor.author | Ryazanov, V.I. | |
dc.date.accessioned | 2020-06-10T15:19:24Z | |
dc.date.available | 2020-06-10T15:19:24Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Assume that Ω is a domain in the complex plane C and A(z) is symmetric 2× 2 matrix function with measurable entries, det A = 1 and such that 1/K|ξ|²≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. In particular, for semi-linear elliptic equations of the form div (A(z)∇u(z)) = f(u(z)) in Ω we prove Factorization Theorem that says that every weak solution u to the above equation can be expressed as the composition u = T ◦ ω, where ω : Ω → G stands for a K−quasiconformal homeomorphism generated by the matrix function A(z) and T(w) is a weak solution of the semi-linear equation △T(w) = J(w)f(T(w)) in G. Here the weight J(w) is the Jacobian of the inverse mapping ω⁻¹. Similar results hold for the corresponding nonlinear parabolic and hyperbolic equations. Some applications of these results in anisotropic media are given. | uk_UA |
dc.identifier.citation | On quasiconformal maps and semi-linear equations in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 161-191. — Бібліогр.: 39 назв. — англ. | uk_UA |
dc.identifier.issn | 1810-3200 | |
dc.identifier.other | 2010 MSC. Primary 30C62, 31A05, 31A20, 31A25, 31B25, 35J61, 35Q15; Secondary 30E25, 31C05, 34M50, 35F45. | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/169320 | |
dc.language.iso | ru | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Український математичний вісник | |
dc.status | published earlier | uk_UA |
dc.title | On quasiconformal maps and semi-linear equations in the plane | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 02-Gutlyanskii.pdf
- Розмір:
- 285.61 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: