Оцінювання кредитних ризиків методами інтелектуального анализу даних

dc.contributor.authorДанилов, В.Я.
dc.contributor.authorЖиров, О.Л.
dc.contributor.authorБідюк, П.І.
dc.date.accessioned2019-04-23T19:11:45Z
dc.date.available2019-04-23T19:11:45Z
dc.date.issued2017
dc.description.abstractПроаналізовано кредитні ризики фінансових організацій за допомогою методів інтелектуального аналізу даних. Фактичні статистичні дані, які характеризують позичальників кредитів, використано для побудови математичних моделей у формі рівнянь типу логіт, дерев рішень і байєсівських мереж. Якість побудованих моделей проаналізовано за множиною належних статистичних критеріїв, які забезпечують основу для вибору кращої альтернативної моделі. Із використанням двох вибірок банківських даних виконано ряд обчислювальних експериментів і виявлено кращі моделі у формі рівнянь типу логіт і байєсівські мережі. Передбачається розширити множину методів побудови математичних моделей і реалізувати ідею комбінування оцінок, згенерованих за альтернативними методами. Обґрунтовано доцільність розроблення та реалізацію спеціалізованої системи підтримання прийняття рішень для виконання досліджень у галузі оцінювання та прогнозування фінансових ризиків.uk_UA
dc.description.abstractПроанализированы кредитные риски финансовых организаций с помощью методов интеллектуального анализа данных. Фактические статистические данные, которые характеризуют заемщиков кредитов, использованы для построения математических моделей в форме уравнений типа логит, деревьев решений и байесовских сетей. Качество построенных моделей проанализировано с помощью множества соответствующих статистических критериев, которые дают основание для выбора лучшей альтернативной модели. С использованием двух выборок банковских данных выполнен ряд вычислительных экспериментов и установлено, что лучшими оказались модели типа логит и байесовские сети. Предусматриваются расширение множества методов построения математических моделей и реализация идеи комбинирования оценок, сгенерированных альтернативними методами. Обоснованы целесообразность разработки и реализация специализированной системы поддержки принятия решений для выполнения исследований в сфере оценивания и прогнозирования финансовых рисков.uk_UA
dc.description.abstractПроанализированы кредитные риски финансовых организаций с помощью методов интеллектуального анализа данных. Фактические статистические данные, которые характеризуют заемщиков кредитов, использованы для построения математических моделей в форме уравнений типа логит, деревьев решений и байесовских сетей. Качество построенных моделей проанализировано с помощью множества соответствующих статистических критериев, которые дают основание для выбора лучшей альтернативной модели. С использованием двух выборок банковских данных выполнен ряд вычислительных экспериментов и установлено, что лучшими оказались модели типа логит и байесовские сети. Предусматриваются расширение множества методов построения математических моделей и реализация идеи комбинирования оценок, сгенерированных альтернативними методами. Обоснованы целесообразность разработки и реализация специализированной системы поддержки принятия решений для выполнения исследований в сфере оценивания и прогнозирования финансовых рисков.uk_UA
dc.identifier.citationОцінювання кредитних ризиків методами інтелектуального анализу даних / В.Я. Данилов, О.Л. Жиров, П.І. Бідюк // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 33-48. — Бібліогр.: 9 назв. — укр.uk_UA
dc.identifier.issn1681–6048
dc.identifier.otherDOI: https://doi.org/10.20535/SRIT.2308-8893.2017.1.03
dc.identifier.udc519.226, 330.322
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/151062
dc.language.isoruuk_UA
dc.publisherНавчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН Україниuk_UA
dc.relation.ispartofСистемні дослідження та інформаційні технології
dc.statuspublished earlieruk_UA
dc.subjectПроблеми прийняття рішень і управління в економічних, технічних, екологічних і соціальних системахuk_UA
dc.titleОцінювання кредитних ризиків методами інтелектуального анализу данихuk_UA
dc.title.alternativeОценивание кредитных рисков методами интеллектуального анализа данныхuk_UA
dc.title.alternativeEstimation of credit risks using the data mining methodsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Danylov.pdf
Розмір:
526.82 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: