Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations

dc.contributor.authorIto, T.
dc.contributor.authorTerwilliger, P.
dc.date.accessioned2019-02-09T20:27:33Z
dc.date.available2019-02-09T20:27:33Z
dc.date.issued2010
dc.description.abstractWe consider the double affine Hecke algebra H=H(k₀,k₁,k₀v,k₁v;q) associated with the root system (C₁v,C₁). We display three elements x, y, z in H that satisfy essentially the Z₃-symmetric Askey-Wilson relations. We obtain the relations as follows. We work with an algebra Ĥ that is more general than H, called the universal double affine Hecke algebra of type (C₁v,C₁). An advantage of Ĥ over H is that it is parameter free and has a larger automorphism group. We give a surjective algebra homomorphism Ĥ → H. We define some elements x, y, z in Ĥ that get mapped to their counterparts in H by this homomorphism. We give an action of Artin's braid group B₃ on Ĥ that acts nicely on the elements x, y, z; one generator sends x → y → z → x and another generator interchanges x, y. Using the B₃ action we show that the elements x, y, z in Ĥ satisfy three equations that resemble the Z₃-symmetric Askey-Wilson relations. Applying the homomorphism Ĥ → H we find that the elements x, y, z in H satisfy similar relations.uk_UA
dc.description.sponsorshipWe thank Alexei Zhedanov for mentioning to us around 2005 that AW(3) has the presentation (1)–(3); this knowledge motivated us to search for a result like Theorem 2.4. We also thank Zhedanov for several illuminating conversations on DAHA during his visit to Kanazawa in December 2007. We thank the two referees for clarifying how the present paper is related to the previous literature. The second author thanks Tom Koornwinder, Alexei Oblomkov, and Xiaoguang Ma for useful recent conversations on the general subject DAHA.uk_UA
dc.identifier.citationDouble Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations / T. Ito, P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 17 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33D80; 33D45
dc.identifier.otherDOI:10.3842/SIGMA.2010.065
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146531
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleDouble Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relationsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
065-Ito.pdf
Розмір:
214.63 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: