Automatic generation of semantic knowledge networks from an unstructured text

dc.contributor.authorSavchenko, M.N.
dc.contributor.authorKriachok, A.S.
dc.date.accessioned2018-09-24T19:17:43Z
dc.date.available2018-09-24T19:17:43Z
dc.date.issued2018
dc.description.abstractA method and an algorithm for the semantic knowledge network automated construction created from the most informative concepts in the electronic texts are proposed. Аn analysis and comparison of existing methods with their software implementations for information research in electronic texts are presented. The results of BBC news article analysis using the proposed method are given.uk_UA
dc.description.abstractЦель статьи: создание алгоритмической и программной базы для построения семантических сетей знаний из самой релевантной по отношению к контексту документов информации. Методы: предложены комплексная методика, алгоритм и его реализация для построения семантической сети знаний из самой значимой информации в заданных текстах. Предложенный комплексный алгоритм сочетает в себе работу нескольких алгоритмов на основе нейронных сетей и статистического анализа. Комбинация данных алгоритмов позволяет распознавать концепты в тексте, находить между ними связи и определять, какие из концептов должны быть включены в результирующую семантическую сеть с помощью оценки их веса в заданном контексте. Результат: проведён анализ большого текстового корпуса, общей численностью около миллиона слов. На основе собранной информации с помощью разработанного алгоритма и рекурсивной грамматики естественного языка построено семантическую сеть знаний для нескольких текстов и отдельную совмещённую семантическую сеть знаний. Проведено сравнение недостатков и преимуществ разработанного алгоритма по отношению к нескольким уже существующих подходам извлечения знаний из текстов. Продемонстрированы полученные результаты.uk_UA
dc.description.abstractМета статті – створення алгоритмічної і програмної бази для побудови семантичних мереж знань із найбільш релевантної інформації відносно контексту документів. Методи: Запропоновано комплексну методику, алгоритм та його реалізацію для побудови семантичної мережі знань із найбільш значимої інформації у заданих текстах. Запропонований комплексний алгоритм поєднує в собі роботу кількох алгоритмів на основі нейронних мереж та статистичного аналізу. Комбінація даних алгоритмів дозволяє розпізнавати концепти в тексті, знаходити між ними зв’язки та визначати, які із концептів мають бути включені до результуючої семантичної мережі за допомогою оцінки їх ваги. Результат: Проведено аналіз великого текстового корпусу, загальною чисельністю близько мільйону слів. На основі зібраної інформації за допомогою розробленого алгоритму і рекурсивної граматики природної мови побудовано семантичну мережу знань для декількох текстів і окрему поєднану семантичну мережу знань. Проведено порівняння недоліків і переваг розробленого алгоритму по відношенню до кількох вже існуючих підходів вилучення знань із текстів. Продемонстровано отримані результати.uk_UA
dc.identifier.citationAutomatic generation of semantic knowledge networks from an unstructured text / M.N. Savchenko, A.S. Kriachok // Управляющие системы и машины. — 2018. — № 1. — С. ХХ-Х71-78Х . — Бібліогр.: 10 назв. — англ.uk_UA
dc.identifier.issn0130-5395
dc.identifier.otherDOI: https://doi.org/10.15407/usim.2018.01.071
dc.identifier.udc004.89
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/142078
dc.language.isoenuk_UA
dc.publisherМіжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН Україниuk_UA
dc.relation.ispartofУправляющие системы и машины
dc.statuspublished earlieruk_UA
dc.subjectМетоды и средства обработки данных и знанийuk_UA
dc.titleAutomatic generation of semantic knowledge networks from an unstructured textuk_UA
dc.title.alternativeАвтоматическое построение семантической сети знаний из неструктурированных текстовuk_UA
dc.title.alternativeАвтоматична побудова семантичних мереж знань із неструктурованих текстівuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
07-Savchenko.pdf
Розмір:
735.55 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: