О спектре сингулярных возмущений полупериодических операторов

dc.contributor.authorМихайлец, В.А.
dc.contributor.authorМолибога, В.Н.
dc.date.accessioned2013-05-18T18:06:07Z
dc.date.available2013-05-18T18:06:07Z
dc.date.issued2011
dc.description.abstractДосліджено властивості заданих у комплексному сепарабельному гільбертовому просторі L^2(0,1) операторів (D^2−)^s+V(x), s що належить (1/2,∞), де D^2−=−d^2/dx^2 — диференціальний оператор з напівперіодичними граничними умовами, а 1-періодична узагальнена функція V(x) належить негативному простору Соболєва H^−sα +, α що належить [0,1]. Дано опис якісних спектральних властивостей таких операторів, знайдено многочленні асимптотичні формули для їх власних значень при s що належить (1,∞) як в самоспряженому випадку, так і в несамоспряженому.uk_UA
dc.description.abstractWe investigate properties of the operators (D^2−)^s+V(x), s belongs (1/2,∞), given in the complex separable Hilbert space L^2(0,1), where D^2−=−d^2/dx^2 is a differential operator subject to semiperiodic boundary conditions, and the 1-periodic distribution V(x) is in the negative Sobolev space H^−sα +, α belongs [0,1]. We describe qualitative spectral properties of the operators and find polynomial asymptotic formulae for their eigenvalues for s belongs (1,∞) in a self-adjoint case and in a non-self-adjoint one.uk_UA
dc.identifier.citationО спектре сингулярных возмущений полупериодических операторов / В.А. Михайлец, В.Н. Молибога // Доп. НАН України. — 2011. — № 11. — С. 36-43. — Бібліогр.: 8 назв. — рос.uk_UA
dc.identifier.issn1025-6415
dc.identifier.udc517.984
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/43821
dc.language.isoruuk_UA
dc.publisherВидавничий дім "Академперіодика" НАН Україниuk_UA
dc.relation.ispartofДоповіді НАН України
dc.statuspublished earlieruk_UA
dc.subjectМатематикаuk_UA
dc.titleО спектре сингулярных возмущений полупериодических операторовuk_UA
dc.title.alternativeOn a spectrum of singular perturbations of the semiperiodic operatorsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Mikhailets.pdf
Розмір:
174.39 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: