Stability of synchronized and clustered states in coupled piecewise linear maps

dc.contributor.authorMatskiv, I.V.
dc.date.accessioned2021-02-09T20:25:35Z
dc.date.available2021-02-09T20:25:35Z
dc.date.issued2004
dc.description.abstractParameter regions for different types of stability of synchronized and clustered states are obtained for two interacting ensembles of globally coupled one-dimensional piecewise linear maps. We analyze strong (asymptotic) and weak (Milnor) stability of the synchronized state, as well as its instability. We found that the stability and instability regionsin the phase space depend only on parameters of the individualskew tent map, and do not depend on the ensembles size. In the simplest nontrivial case of four coupled chaotic maps we obtain stability regions for coherent and two-cluster states. The regions appear to be large enough to provide an effective control of coherent and clustered chaotic regimes. Transition from desynchronization to synchronization is identified to be qualitatively different in smooth and piecewise linear models.uk_UA
dc.description.abstractЗнайдено параметричнi областi для рiзних типiв стiйкостi синхронiзованих та кластерних станiв для двох взаємодiючих ансамблiв глобально зв’язаних одновимiрних кусково-лiнiйних вiдображень. Дослiджено сильну (асимптотичну) та слабку (за Мiлнором) стiйкiсть та нестiйкiсть синхронiзованого стану системи. Визначено, що областi стiйкостi та нестiйкостi у просторi параметрiв залежать лише вiд коефiцiєнтiв кусково-лiнiйного вiдображення i не залежать вiд розмiру ансамблiв. Для найпростiшого нетривiального випадку чотирьох зв’язаних вiдображень отримано областi стiйкостi для когерентного та двокластерних станiв. Досить великi розмiри областей стiйкостi у просторi параметрiв дають можливiсть проводити ефективне керування когерентним та кластерними режимами у системi. Крiм цього, виявлено якiсно рiзнi способи десинхронiзацiї у системах кусково-лiнiйних та гладких вiдображень.uk_UA
dc.description.sponsorshipThe author is grateful to Yu. L. Maistrenko and S. I. Popovych for a number of illuminating discussions.uk_UA
dc.identifier.citationStability of synchronized and clustered states in coupled piecewise linear maps / I.V. Matskiv // Нелінійні коливання. — 2004. — Т. 7, № 2. — С. 217-228. — Бібліогр.: 20 назв. — англ.uk_UA
dc.identifier.issn1562-3076
dc.identifier.udc517.9
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/177006
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofНелінійні коливання
dc.statuspublished earlieruk_UA
dc.titleStability of synchronized and clustered states in coupled piecewise linear mapsuk_UA
dc.title.alternativeСтійкість синхронізованих та кластерних станів у системі зв'язаних кусково-лінійних відображеньuk_UA
dc.title.alternativeУстойчивость синхронизированных и кластерных состояний в системе связанных кусочно-линейных отображенийuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Matskiv.pdf
Розмір:
234.65 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: