Is There an Analytic Theory of Automorphic Functions for Complex Algebraic Curves?

dc.contributor.authorFrenkel, Edward
dc.date.accessioned2025-12-15T15:25:43Z
dc.date.issued2020
dc.description.abstractThe geometric Langlands correspondence for complex algebraic curves differs from the original Langlands correspondence for number fields in that it is formulated in terms of sheaves rather than functions (in the intermediate case of curves over finite fields, both formulations are possible). In a recent preprint, Robert Langlands made a proposal for developing an analytic theory of automorphic forms on the moduli space of G-bundles on a complex algebraic curve. Langlands envisioned these forms as eigenfunctions of some analogues of Hecke operators. In these notes, I show that if G is an abelian group, then there are well-defined Hecke operators, and I give a complete description of their eigenfunctions and eigenvalues. For non-abelian G, Hecke operators involve integration, which presents some difficulties. However, there is an alternative approach to developing an analytic theory of automorphic forms, based on the existence of a large commutative algebra of global differential operators acting on half-densities on the moduli stack of G-bundles. This approach (which implements some ideas of Joerg Teschner) is outlined here, as a preview of a joint work with Pavel Etingof and David Kazhdan.
dc.description.sponsorshipThe first version of this paper was based on the notes of my talk at the 6th Abel Conference, University of Minnesota, November 2018. I thank Roberto Alvarenga, Julia Gordon, Ivan Fesenko, David Kazhdan, and Raven Waller for valuable discussions.
dc.identifier.citationIs There an Analytic Theory of Automorphic Functions for Complex Algebraic Curves?. Edward Frenkel. SIGMA 16 (2020), 042, 31 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.042
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 14D24; 17B67; 22E57
dc.identifier.otherarXiv:1812.08160
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210708
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleIs There an Analytic Theory of Automorphic Functions for Complex Algebraic Curves?
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
042-Frenkel.pdf
Розмір:
593.27 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: