Задача балансной компоновки 3D-объектов: математическая модель и методы решения

dc.contributor.authorКоваленко, А.А.
dc.contributor.authorРоманова, Т.Е.
dc.contributor.authorСтецюк, П.И.
dc.date.accessioned2017-10-06T19:06:25Z
dc.date.available2017-10-06T19:06:25Z
dc.date.issued2015
dc.description.abstractПостроена обобщенная математическая модель задачи оптимальной компоновки 3D-объектов (шары, прямые круговые цилиндры, прямые правильные призмы, прямые прямоугольные параллелепипеды) в контейнере (прямой круговой цилиндр, параболоид вращения, усеченный круговой конус) с круговыми стеллажами. Учтены допустимые расстояния между объектами и ограничения поведения механической системы (ограничения равновесия, моментов инерции, устойчивости). Предложены методы решения на основе r-алгоритма Шора, мультистарта и ускоренного перебора концевых вершин дерева решений.uk_UA
dc.description.abstractПобудовано узагальнену математичну модель задачі оптимального компонування 3D-об’єктів (кулі, прямі кругові циліндри, прямі правильні призми, прямі прямокутні паралелепіпеди) в контейнері (прямий круговий циліндр, параболоїд обертання, зрізаний круговий конус) з круговими стелажами. Враховано допустимі відстані між об’єктами та обмеження поведінки механічної системи (обмеження рівноваги, моментів інерції, стійкості). Запропоновано методи розв’язання на основі r-алгоритму Шора, мультистарту та прискореного перебору кінцевих вершин дерева розв’язків.uk_UA
dc.description.abstractThe paper introduces a general mathematical model of the optimal layout of 3D-objects (spheres, straight circular cylinders, straight regular prisms, and straight rectangular parallelepipeds) into a container (straight circular cylinder, paraboloid of revolution, truncated circular cone) with circular shelves. The model takes into account the minimum and maximum allowable distances between objects as well as the behavior constraints of the mechanical system (equilibrium, moments of inertia, and stability constraints). We propose solution methods based on Shor’s r-algorithm, multistart algorithm, and accelerated search of terminal nodes of the solution tree.uk_UA
dc.identifier.citationЗадача балансной компоновки 3D-объектов: математическая модель и методы решения / А.А. Коваленко, Т.Е. Романова, П.И. Стецюк // Кибернетика и системный анализ. — 2015. — Т. 51, № 4. — С. 71-81. — Бібліогр.: 15 назв. — рос.uk_UA
dc.identifier.issn0023-1274
dc.identifier.udc519.85
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/124838
dc.language.isoruuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectСистемный анализuk_UA
dc.titleЗадача балансной компоновки 3D-объектов: математическая модель и методы решенияuk_UA
dc.title.alternativeЗадача балансного компонування 3D-об єктів: математична модель та методи розв'язанняuk_UA
dc.title.alternativeThe problem of balance layout of 3D-objects: Mathematical model and solution methoduk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
07-Kovalenko.pdf
Розмір:
227.92 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: