About Bounds for Eigenvalues of the Laplacian with Density

dc.contributor.authorNdiaye, Aïssatou Mossèle
dc.date.accessioned2025-12-17T14:27:27Z
dc.date.issued2020
dc.description.abstractLet 𝑀 denote a compact, connected Riemannian manifold of dimension 𝑛 ∈ ℕ. We assume that 𝑀 has a smooth and connected boundary. Denote by 𝑔 and d𝑣𝑔, respectively, the Riemannian metric on 𝑀 and the associated volume element. Let Δ be the Laplace operator on 𝑀 equipped with the weighted volume form d𝑚:= e⁻ʰd𝑣𝑔. We are interested in the operator Lₕ⋅ :=e⁻ʰ⁽ᵅ⁻¹⁾(Δ⋅+α𝑔(∇h, ∇⋅)), where α > 1 and 𝘩 ∈ 𝐶²(𝑀) are given. The main result in this paper states the existence of upper bounds for the eigenvalues of the weighted Laplacian Lₕ with the Neumann boundary condition if the boundary is non-empty.
dc.description.sponsorshipThis paper is part of the author's Ph.D. Thesis under the direction of Professor Bruno Colbois (Neuchâtel University). The author wishes to express her thanks to her supervisor for suggesting the problem. She is also grateful to the anonymous referee whose suggestions and remarks greatly improved this paper.
dc.identifier.citationAbout Bounds for Eigenvalues of the Laplacian with Density. Aïssatou Mossèle Ndiaye. SIGMA 16 (2020), 090, 8 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.090
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 35P15; 58J50
dc.identifier.otherarXiv:2002.03698
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210758
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleAbout Bounds for Eigenvalues of the Laplacian with Density
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
090-Ndiaye.pdf
Розмір:
336.51 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: