A Probablistic Origin for a New Class of Bivariate Polynomials

dc.contributor.authorHoare, M.R.
dc.contributor.authorRahman, M.
dc.date.accessioned2019-02-16T16:24:26Z
dc.date.available2019-02-16T16:24:26Z
dc.date.issued2008
dc.description.abstractWe present here a probabilistic approach to the generation of new polynomials in two discrete variables. This extends our earlier work on the 'classical' orthogonal polynomials in a previously unexplored direction, resulting in the discovery of an exactly soluble eigenvalue problem corresponding to a bivariate Markov chain with a transition kernel formed by a convolution of simple binomial and trinomial distributions. The solution of the relevant eigenfunction problem, giving the spectral resolution of the kernel, leads to what we believe to be a new class of orthogonal polynomials in two discrete variables. Possibilities for the extension of this approach are discussed.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Dunkl Operators and Related Topics.uk_UA
dc.identifier.citationA Probablistic Origin for a New Class of Bivariate Polynomials / M.R. Hoare, M. Rahman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 24 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 33C45; 60J05
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148000
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA Probablistic Origin for a New Class of Bivariate Polynomialsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
89-Hoare.pdf
Розмір:
303.25 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: