Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆

dc.contributor.authorMoura, A.
dc.contributor.authorPereira, F.
dc.date.accessioned2019-06-15T20:45:28Z
dc.date.available2019-06-15T20:45:28Z
dc.date.issued2011
dc.description.abstracte obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type E₆. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated quantum group. We prove that this is the case under further restrictions on the highest weight. Under another set of conditions on the highest weight, Chari and Greenstein have recently proved that they are projective objects of a full subcategory of the category of graded modules for the current algebra. Our formula applies to all of these projective modules.uk_UA
dc.identifier.citationGraded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ / A. Moura, F. Pereira // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 69–115. — Бібліогр.: 24 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification:17B10, 17B70, 20G42.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/154775
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleGraded limits of minimal affinizations and beyond: the multiplicity free case for type E₆uk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
05-Moura.pdf
Розмір:
431.41 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: