Fuchsian Equations with Three Non-Apparent Singularities

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We show that for every second-order Fuchsian linear differential equation E with n singularities, of which n−3 are apparent, there exists a hypergeometric equation H and a linear differential operator with polynomial coefficients which maps the space of solutions of H into the space of solutions of E. This map is surjective for generic parameters. This justifies one statement of Klein (1905). We also count the number of such equations E with prescribed singularities and exponents. We apply these results to the description of conformal metrics of curvature 1 on the punctured sphere with conic singularities, all but three of them having integer angles.

Опис

Теми

Цитування

Fuchsian Equations with Three Non-Apparent Singularities / A. Eremenko, V. Tarasov // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 18 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced