From Quantum AN to E₈ Trigonometric Model: Space-of-Orbits View
dc.contributor.author | Turbiner, A.V. | |
dc.date.accessioned | 2019-02-19T18:36:15Z | |
dc.date.available | 2019-02-19T18:36:15Z | |
dc.date.issued | 2013 | |
dc.description.abstract | A number of affine-Weyl-invariant integrable and exactly-solvable quantum models with trigonometric potentials is considered in the space of invariants (the space of orbits). These models are completely-integrable and admit extra particular integrals. All of them are characterized by (i) a number of polynomial eigenfunctions and quadratic in quantum numbers eigenvalues for exactly-solvable cases, (ii) a factorization property for eigenfunctions, (iii) a rational form of the potential and the polynomial entries of the metric in the Laplace-Beltrami operator in terms of affine-Weyl (exponential) invariants (the same holds for rational models when polynomial invariants are used instead of exponential ones), they admit (iv) an algebraic form of the gauge-rotated Hamiltonian in the exponential invariants (in the space of orbits) and (v) a hidden algebraic structure. A hidden algebraic structure for (A–B–C–D)-models, both rational and trigonometric, is related to the universal enveloping algebra Ugln. For the exceptional (G–F–E)-models, new, infinite-dimensional, finitely-generated algebras of differential operators occur. Special attention is given to the one-dimensional model with BC₁≡(Z2)⊕T symmetry. In particular, the BC₁ origin of the so-called TTW model is revealed. This has led to a new quasi-exactly solvable model on the plane with the hidden algebra sl(2)⊕sl(2). | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”. The full collection is available at http://www.emis.de/journals/SIGMA/SESSF2012.html. This work was supported in part by the University Program FENOMEC, by the PAPIIT grant IN109512 and CONACyT grant 166189 (Mexico). | uk_UA |
dc.identifier.citation | From Quantum AN to E₈ Trigonometric Model: Space-of-Orbits View / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 24 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 35P99; 47A15; 47A67; 47A75 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2013.003 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149207 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | From Quantum AN to E₈ Trigonometric Model: Space-of-Orbits View | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 003-Turbiner.pdf
- Розмір:
- 529.6 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: