Sets of prime power order generators of finite groups

dc.contributor.authorStocka, A.
dc.date.accessioned2023-03-03T16:08:50Z
dc.date.available2023-03-03T16:08:50Z
dc.date.issued2020
dc.description.abstractA subset X of prime power order elements of a finite group G is called pp-independent if there is no proper subset Y of X such that 〈Y,Ф(G)〉 = 〈X,Ф(G)〉, where Ф(G) is the Frattini subgroup of G. A group G has property Bpp if all pp-independent generating sets of G have the same size. G has the pp-basis exchange property if for any pp-independent generating sets B₁,B₂ of G and x ∈ B₁ there exists y ∈ B₂ such that (B₁ \ {x}) ∪ {y} is a pp-independent generating set of G. In this paper we describe all finite solvable groups with property Bpp and all finite solvable groups with the pp-basis exchange property.uk_UA
dc.description.sponsorshipThis article has received financial support from the Polish Ministry of Science and Higher Education under subsidy for maintaining the research potential of the Faculty of Mathematics and Informatics, University of Białystok.uk_UA
dc.identifier.citationSets of prime power order generators of finite groups / A. Stocka // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 129–138. — Бібліогр.: 12 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.otherDOI:10.12958/adm1479
dc.identifier.other2010 MSC: Primary 20D10; Secondary 20F05
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/188508
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleSets of prime power order generators of finite groupsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
12-Stocka.pdf
Розмір:
356.33 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: