Sets of prime power order generators of finite groups
dc.contributor.author | Stocka, A. | |
dc.date.accessioned | 2023-03-03T16:08:50Z | |
dc.date.available | 2023-03-03T16:08:50Z | |
dc.date.issued | 2020 | |
dc.description.abstract | A subset X of prime power order elements of a finite group G is called pp-independent if there is no proper subset Y of X such that 〈Y,Ф(G)〉 = 〈X,Ф(G)〉, where Ф(G) is the Frattini subgroup of G. A group G has property Bpp if all pp-independent generating sets of G have the same size. G has the pp-basis exchange property if for any pp-independent generating sets B₁,B₂ of G and x ∈ B₁ there exists y ∈ B₂ such that (B₁ \ {x}) ∪ {y} is a pp-independent generating set of G. In this paper we describe all finite solvable groups with property Bpp and all finite solvable groups with the pp-basis exchange property. | uk_UA |
dc.description.sponsorship | This article has received financial support from the Polish Ministry of Science and Higher Education under subsidy for maintaining the research potential of the Faculty of Mathematics and Informatics, University of Białystok. | uk_UA |
dc.identifier.citation | Sets of prime power order generators of finite groups / A. Stocka // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 129–138. — Бібліогр.: 12 назв. — англ. | uk_UA |
dc.identifier.issn | 1726-3255 | |
dc.identifier.other | DOI:10.12958/adm1479 | |
dc.identifier.other | 2010 MSC: Primary 20D10; Secondary 20F05 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/188508 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Algebra and Discrete Mathematics | |
dc.status | published earlier | uk_UA |
dc.title | Sets of prime power order generators of finite groups | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: