Existence of periodic solutions for the periodically forced SIR model

dc.contributor.authorKatriel, G.
dc.date.accessioned2021-02-10T16:07:02Z
dc.date.available2021-02-10T16:07:02Z
dc.date.issued2013
dc.description.abstractWe prove that the seasonally-forced SIR model with a T-periodic forcing has a periodic solution with period T whenever the basic reproductive number R₀ > 1. The proof uses Leray – Schauder degree theory.uk_UA
dc.description.abstractДоведено, що для моделi SIR з T-перiодичною iнфекцiєю iснує перiодичний розв’язок з перiодом T, якщо основне репродуктивне число R₀ > 1. При цьому використано теорiю Лере – Шаудера.uk_UA
dc.description.sponsorshipThis research was supported by the EU-FP7 (grant Epiwork).uk_UA
dc.identifier.citationExistence of periodic solutions for the periodically forced SIR model / G. Katriel // Нелінійні коливання. — 2013. — Т. 16, № 3. — С. 359-366. — Бібліогр.: 19 назв. — англ.uk_UA
dc.identifier.issn1562-3076
dc.identifier.udc517.9
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/177126
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofНелінійні коливання
dc.statuspublished earlieruk_UA
dc.titleExistence of periodic solutions for the periodically forced SIR modeluk_UA
dc.title.alternativeIснування періодичних розв'язків для моделi SIR з перiодичною інфекцієюuk_UA
dc.title.alternativeСуществование периодических решений для модели SIR с периодической инфекциейuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Katriel.pdf
Розмір:
335.61 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: