A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold

dc.contributor.authorSarlet, W.
dc.date.accessioned2019-02-16T08:14:44Z
dc.date.available2019-02-16T08:14:44Z
dc.date.issued2007
dc.description.abstractWe review properties of so-called special conformal Killing tensors on a Riemannian manifold (Q,g) and the way they give rise to a Poisson-Nijenhuis structure on the tangent bundle TQ. We then address the question of generalizing this concept to a Finsler space, where the metric tensor field comes from a regular Lagrangian function E, homogeneous of degree two in the fibre coordinates on TQ. It is shown that when a symmetric type (1,1) tensor field K along the tangent bundle projection τ: TQ→ Q satisfies a differential condition which is similar to the defining relation of special conformal Killing tensors, there exists a direct recursive scheme again for first integrals of the geodesic spray. Involutivity of such integrals, unfortunately, remains an open problem. Remove selecteduk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the Workshop on Geometric Aspects of Integrable Systems (July 17–19, 2006, University of Coimbra, Portugal). This work has been partially supported by the European Union through the FP6 Marie Curie RTN ENIGMA (Contract number MRTN-CT-2004-5652).uk_UA
dc.identifier.citationA Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold / W. Sarlet // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 6 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 37J35; 53C60; 70H06
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147793
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifolduk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
24-Sarlet.pdf
Розмір:
182.1 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: