An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
dc.contributor.author | Ghressi, A. | |
dc.contributor.author | Khériji, L. | |
dc.contributor.author | Tounsi, M.I. | |
dc.date.accessioned | 2019-02-14T17:36:55Z | |
dc.date.available | 2019-02-14T17:36:55Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted. | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Proceedings of the Conference “Symmetries and Integrability of Difference Equations (SIDE-9)” (June 14–18, 2010, Varna, Bulgaria). The full collection is available at http://www.emis.de/journals/SIGMA/SIDE-9.html. The authors are very grateful to the referees for the constructive and valuable comments and recommendations and for making us pay attention to a certain references. | uk_UA |
dc.identifier.citation | An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 42C05; 33C45 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2011.092 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147401 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 092-Ghressi.pdf
- Розмір:
- 417.68 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: