Remarks on Contact and Jacobi Geometry

dc.contributor.authorBruce, A.J.
dc.contributor.authorGrabowska, K.
dc.contributor.authorGrabowski, J.
dc.date.accessioned2019-02-18T18:12:47Z
dc.date.available2019-02-18T18:12:47Z
dc.date.issued2017
dc.description.abstractWe present an approach to Jacobi and contact geometry that makes many facts, presented in the literature in an overcomplicated way, much more natural and clear. The key concepts are Kirillov manifolds and linear Kirillov structures, i.e., homogeneous Poisson manifolds and, respectively, homogeneous linear Poisson manifolds. The difference with the existing literature is that the homogeneity of the Poisson structure is related to a principal GL(1,R)-bundle structure on the manifold and not just to a vector field. This allows for working with Jacobi bundle structures on nontrivial line bundles and drastically simplifies the picture of Jacobi and contact geometry. Our results easily reduce to various basic theorems of Jacobi and contact geometry when the principal bundle structure is trivial, while giving new insights into the theory.uk_UA
dc.description.sponsorshipThe authors are indebted to the anonymous referees whose comments have served to improve the content and presentation of this paper. The research of K. Grabowska and J. Grabowski was funded by the Polish National Science Centre grant under the contract number DEC2012/06/A/ST1/00256.uk_UA
dc.identifier.citationRemarks on Contact and Jacobi Geometry / A.J. Bruce, K. Grabowska, J. Grabowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 47 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53D05; 53D10; 53D17; 58E40; 58H05
dc.identifier.otherDOI:10.3842/SIGMA.2017.059
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148728
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleRemarks on Contact and Jacobi Geometryuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
059-Bruce.pdf
Розмір:
476.2 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: