Integrability of Discrete Equations Modulo a Prime

dc.contributor.authorKanki, M.
dc.date.accessioned2019-02-21T07:08:28Z
dc.date.available2019-02-21T07:08:28Z
dc.date.issued2013
dc.description.abstractWe apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion of the singularity confinement does. We first prove that q-discrete analogues of the Painlevé III and IV equations have AGR. We next prove that the Hietarinta-Viallet equation, a non-integrable chaotic system also has AGR.uk_UA
dc.description.sponsorshipThe author wish to thank Professors Jun Mada, K.M. Tamizhmani, Tetsuji Tokihiro and Ralph Willox for insightful discussions and comments. He also thanks the detailed suggestions by the referees. This work is supported by Grant-in-Aid for JSPS Fellows (24-1379).uk_UA
dc.identifier.citationIntegrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 37K10; 34M55; 37P25
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2013.056
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149351
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleIntegrability of Discrete Equations Modulo a Primeuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
056-Kanki.pdf
Розмір:
316.58 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: