Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations

dc.contributor.authorClerc, Jean-Louis
dc.contributor.authorKoufany, Khalid
dc.date.accessioned2025-12-29T11:05:54Z
dc.date.issued2021
dc.description.abstractLet 𝕊 be a Clifford module for the complexified Clifford algebra ℂℓ(ℝⁿ), 𝕊′ its dual, ρ and ρ′ be the corresponding representations of the spin group Spin(𝑛). The group G=Spin(1, 𝑛+1) is a (twofold) covering of the conformal group of ℝⁿ. For λ, μ ∈ ℂ, let πρ,λ (resp. πρ′,μ) be the spinorial representation of 𝐺 realized on a (subspace of) C∞(ℝⁿ, 𝕊) (resp. C∞(ℝⁿ, 𝕊′)). For 0 ≤ 𝑘 ≤ 𝑛 and 𝑚 ∈ ℕ, we construct a symmetry-breaking differential operator 𝘉⁽ᵐ⁾k;λ,μ from C∞(ℝⁿ×ℝⁿ, 𝕊 ⊗ 𝕊′) into C∞(ℝⁿ, Λ*ₖ(ℝⁿ)⊗ ℂ) which intertwines the representations πρ,λ⊗πρ′,μ and πτ∗ₖ,λ₊μ₊₂ₘ, where τ*ₖ is the representation of Spin(𝑛) on the space Λ*ₖ(ℝⁿ)⊗ ℂ of complex-valued alternating 𝑘-forms on ℝⁿ.
dc.description.sponsorshipAt the very beginning of the present work, the first author benefited from a discussion with Bent Ørsted during a visit to Aarhus University and wishes to thank him and his institution for the invitation. The authors are very grateful to the anonymous referees for their expert comments and suggestions, which helped to improve the initial version of this article.
dc.identifier.citationSymmetry Breaking Differential Operators for Tensor Products of Spinorial Representations. Jean-Louis Clerc and Khalid Koufany. SIGMA 17 (2021), 049, 23 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.049
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 43A85; 58J70; 33J45
dc.identifier.otherarXiv:2012.09625
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211300
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleSymmetry Breaking Differential Operators for Tensor Products of Spinorial Representations
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
049-Clerc.pdf
Розмір:
473.87 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: