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The present paper is a natural continuation of our last articles on the Riemann, Hilbert, Dirichlet, Poincaré, and, in
particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic functions and the so-called
A-harmonic functions with arbitrary boundary data that are measurable with respect to the logarithmic capacity.
Here, we extend the corresponding results to generalized analytic functions h: D — C with sources g:9-h=g e L,
p > 2, and to generalized harmonic functions U with sources G : AU =G €I?, p > 2. Our approach is based on the
geometric (functional-theoretic) interpretation of boundary values in comparison with the classical operator ap-
proach in PDE. Here, we will establish the corresponding existence theorems for the Poincaré problem on direc-
tional derivatives and, in particular, for the Neumann problem to the Poisson equations AU =G with arbitrary
boundary data that are measurable with respect to the logarithmic capacity. A few mixed boundary-value problems
are considered as well. These results can be also applied to semilinear equations of mathematical physics in aniso-
tropic and inhomogeneous media.

Keywords: Poincaré and Neumann boundary-value problems, generalized analytic functions, generalized har-
monic functions, logarithmic capacity and potential.

1. Introduction. Our last paper [1] was devoted to the proof of the existence of nonclassical so-
lutions of the Riemann, Hilbert, and Dirichlet boundary-value problems with arbitrary measura-
ble boundary data with respect to the logarithmic capacity for the equations

0-h(z)=g(2) (1)
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with the real-valued function g in the class L”, p >2. We call continuous solutions % of Eq. (1)
with the generalized first partial derivatives by Sobolev generalized analytic functions with sources g.

Recall that the research of the Dirichlet problem for harmonic functions in a unit disk
D:={zeC:z|<1} with arbitrary measurable boundary data is due to the Luzin dissertation, see
its original text [2] and its reprint [3]. The corresponding analogs of the Luzin theorems in terms
of the logarithmic capacity in more general domains can be found in [4] (see also [5]). Later on,
a series of results in various boundary-value problems have been formulated and proved in terms
of the logarithmic capacity, see its definition and properties in [6]. Further, g.e. means quasieve-
rywhere with respect to the logarithmic capacity.

The present paper contains, in particular, the proof of the existence of nonclassical solu-
tions to the Poincaré problem on the directional derivatives and, in particular, to the Neumann
problem with arbitrary measurable boundary data with respect to the logarithmic capacity for
the Poisson equations

AU(2)=G(2) (2)

with real-valued functions G of a class L’(D), p>2, in the corresponding domains DcC.
For short, we call continuous solutions to (2) of the class ng’cp (D) generalized harmonic func-
tions with the source G . Note that, by the Sobolev embedding theorem, see Theorem 1.10.2 in [7],
such functions belong to the class C*.

However, the paper is started and finished by nonlinear mixed boundary-value problems of
mathematical physics.

In this connection, recall one more useful definition. Let D be a domain in C whose boun-
dary consists of a finite collection of mutually disjoint Jordan curves. A family of mutually dis-
joint Jordan arcs J. :[0,1]— D, {edD, with J.([0,1))c D and J.(1)= that is continuous
in the parameter ( is called a Bagemihl—Seidel system or, in short, of class BS (see [8]). For the
rest definitions, we refer to the paper [1].

2. On mixed boundary-value problems. Remark 3 in our previous paper [1] makes it pos-
sible to formulate a series of nonlinear boundary-value problems in terms of Bagemihl-Seidel sys-
tems for generalized analytic functions including mixed boundary-value problems. In order to
demonstrate the potentiality of our approach, we give here a couple of results. Namely, arguing
similarly to the proof of Theorem 1 in [1], see also Theorem 1.10 in [9], we obtain, for instance, by
Theorem 10 and Lemma 5 in [10], the following statement on mixed boundary-value problems.

Theorem 1. Let D be a domain in C whose boundary consists of a finite number of mutually
disjoint Jordan curves, ¢:0DxC — C, satisfy the Carathéodory conditions and let v:0D — C,
|v(§) =1, be measurable with respect to the logarithmic capacity. Suppose also that g:C — R is
in C*(C), ae(0,1), with compact support, {v¢}.cop and {y;}c.op are families of Jordan arcs of
the class BS in D and C\ D, correspondingly.

Then there exist generalized analytic functions f*:D—>C and f~:C\ D — C with the source
g such that

f*(c;>=<p[c, {%} (C)J ge. on oD, 3)
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where [*(C) and {Z—f}_ (C) are limits of the functions f*(z) and 8{;‘_\/_(2) as z—¢ along v;
\

and vy , correspondingly.

Furthermore, the space of all such couples (f*, ) has the infinite dimension for any such pres-
cribed functions g, ¢, v and collections y; and vy, , {edD.

Theorem 1 is a special case of the following lemma on the mixed problem with shift.

Lemma 1. Under the conditions of Theorem 1, let, in addition, p:0D — 0D be a homeomor-
phism keeping components of 6D such that p and B! have the Luzin (N) -property with respect
to the logarithmic capacity. o

Then there exist generalized analytic functions [*:D—>C and [~ :C\D-—C with the
source g such that

f+<B<c>>=<p[c;, [%}(C)J ge. on @D, )

where [*(C) and [Z_f}_ (§) are limits of the functions f*(z) and aaL(z) as z—C along y;
v v

and vy , correspondingly.

Furthermore, the space of all such couples (f, f~) has the infinite dimension for any such pre-
scribed g, ¢, v, B and collections {y;}..op and {v:}ccop -

Proof. Indeed, by relations (2.21) in [6] and Theorem 1.10 in [9], the logarithmic (Newto-
nian) potential N, with the source G =2g,

Ng(2) :=%J.ln|z—w|G(w) dm(w), (5)
C

isin C**(C). Setting P:= N, we conclude by elementary calculations that the function

H(z):=VP(z), zeC, VP:=P +iP,, z=x+iy, (6)

is a generalized analytic function in the class C1*(C) with the source g. Hence, the function
of the directional derivatives of H(z) along the unit vectors v({)

h<c>:=%<c>, geaD, )

as the projection of its gradient VH :=H +iH ,z=x+iy, into v(§) is measurable with res-
pect to the logarithmic capacity, because VH(z) e C*(C).

Now, let @:0D — C be an arbitrary function that is measurable with respect to the loga-
rithmic capacity. Then, by Theorem 6 in [10], there exist analytic functions A~ :C\ D —C
such that

oA
limA

z—¢ OV

(2)=a(f) gqg.e. ondD. (8
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Setting /- =H+.A" on (C\B and y=h+a on 0D, we see that the function y:0D — C
can be measurable with respect to the logarithmic capacity, f~is a generalized analytic func-
tion with the source g in C\ D, and

imZ—(2)=w(&) ge. on aD. )
z¢ OV

Next, the function W(():= (¢, w(£)) is measurable with respect to the logarithmic capa-
city on 8D (see Example 1 to Remark 4 in paper [1]). Then the function ® =¥ op™! is also mea-
surable with respect to the logarithmic capacity, because the homeomorphism B has the Luzin
(N) -property with respect to the logarithmic capacity.

Consequently, by Theorem 1 in [10], there exist analytic functions A" :D — C such that
A" (2) > ®(E)-H(C) as z— ¢ along v, q.e. on 0D . Setting /" =H+A" on D, we see that
/" is a generalized analytic function with the source g in D such that f(z2) > ®({) as

z— ¢ along v, q.e.on oD

Thus, f* and f~ are the desired functions, because B~ also has the Luzin (N)-property.
It remains to note that the space of all such couples (f, f7) has the infinite dimension, because
the space of all functions y : 0D — C which are measurable with respect to the logarithmic capac-
ity has the infinite dimension (see arguments in Remark 2 of paper [1]).

Remark 1. In the case of Jordan domains D, following the same scheme, namely, applying
once more Theorem 6 in [10] instead of Theorem 1 in [10] in the final stage of the above proof,
the similar statement can be derived for the boundary gluing conditions of the form

Ff }(B(C))w{@ {af—_}(@] g on aD . (10)

OV ov

3. Poincaré and Neumann problems in terms of angular limits. In this section, we consider
the Poincaré boundary-value problem on the directional derivatives and, in particular, the
Neumann problem for the Poisson equations

AU(2)=G(2) (11)

with real-valued functions G of the classes [’(D) with p>2 in the corresponding domains
D c C. Recall that a continuous solution U of (11) in the class ng’cp is called a generalized
harmonic function with the source G and that, by the Sobolev embedding theorem, such a solu-
tion belongs to the class C*.

Theorem 2. Let D be a Jordan domain with the quasihyperbolic boundary condition, 6D
have a tangent q.e., v:0D — C,|v(§)|=1, be in CBV(OD), and ¢:0D — R be measurable with
respect to the logarithmic capacity.

Suppose that G:D — R isin [P(D), p>2. Then there exist generalized harmonic functions
U:D — R with the source G that have the angular limits

im L ()=p(&) e onaD. (12)
z(¢ ov

Furthermore, the space of such functions U has the infinite dimension.
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Proof. Indeed, let us extend the function G by zero outside of D, and let P be the logarith-
mic potential N with the source G, see (5). Then, by Lemma 3 in [6], P e W](Q)’Cp ((C)mCli(')g((C)
with a=(p-2)/p and AP=G a.e.in C. Set

¢«(C)=Rev() H(C), CedD, (13)
where
H(z):=VP(z),zeC, VP:=P +iP, z=x+iy. (14)

Then, by Theorem 1 in [1], with g=G /2 in D and A=V on 0D, there exist generalized
analytic functions 2 with the source g that have the angular limits

liné Rev(0) h(2)=9(0) q.e. on oD (15)

and, moreover, by Remark 1, the given functions 4 can be represented in the form of the sums
A+ H with analytic functions A in D that have the angular limits

hn% Rev(§)A(z)=D(C) q.e. on 0D (16)

With ®():=¢(£)-9.(), {€dD, and the space of such analytic functions A has the infinite
dimension.

Note that any indefinite integral F of such A in the simply connected domain D is also
a single-valued analytic function, and the harmonic functions u:=Re F and v:=Im F satisfy

the Cauchy--Riemann system u, =v, and u, =-v,. Hence,

A=F'=F, =u,+i-v, =u, —i-u,=Vu. (17)
Consequently, setting U. =u+ P, we see that U. is a generalized harmonic function with
the source G and, moreover, by construction, 2z=VU. .
Note also that the directional derivative of U. along the unit vector v is the projection of
its gradient AU, into v, i.e., the scalar product of v and AU. interpreted as vectors in R?
and, consequently,

a({j=(V,VU*)=Rev-VU*=Rev-h. (18)

Thus, (15) implies (12) and the proof is complete.

Remark 2. We are able to say more in the case of Re n(5)v(£)>0, where n(¢) is the inner
normal to 8D at the point . Indeed, the latter magnitude is a scalar product of n=n({) and
v=v(§) interpreted as vectors in R?, and it has the geometric sense of projection of the vector
v onto 7. In view of (12), since the limit ¢(¢) is finite, there is a finite limit U() of U(z) as
z—C in D along the straight line passing through the point € and being parallel to the vec-
tor v, because, along this line,
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1
U(z)=U(zO)—f%(zo+r(2—20))dr- (19)
0

Thus, at each point with condition (12), there is the directional derivative

UC+t-v)=U(C)
¢

% ©=lim ~0(0). (20)
ov t—0

In particular, in the case of the Neumann problem, Re n(£)v(€)=1>0, where n=n(%)
denotes the unit interior normal to 6D at the point £, and we have, by Theorem 2 and Remark 2,
the following significant result.

Corollary 1. Let D be a Jordan domain in C with the quasihyperbolic boundary condition,
the unit inner normal n(C), £ eoD, belong to the class CBV(0D), and ¢:0D — R be measurable
with respect to the logarithmic capacity.

Suppose that G: D — R isin [P (D), p>2. Then one can find generalized harmonic functions
U:D — R with the source G such that, q.e. on 0D , there exist:

1) the finite limit along the normal n(¢)
U= liné U(z),

2) the normal derivative

Wy VEHE(E) U ()
on t

t—0

=0(0),

3) the angular limit

oUu oU
ilf}; o (2)= o ©.

Furthermore, the space of such functions U has the infinite dimension.

4. Poincaré and Neumann problems and Bagemihl—Seidel systems. Arguing similarly to
the last section, we obtain, by Theorem 6 in [10], the following statement.

Theorem 3. Let D be a_Jordan domainin C, v:0D —C, |v() =1, and ¢:0D — C be mea-
surable functions with respect to the logarithmic capacity, and {y}.,p be a family of Jordan arcs
of the class BS in D .

Suppose also that G:D — R isin [P(D), p>2. Then there exist generalized harmonic func-
tions U : D — C with the source G that have the limits along vy,

im L ()=p(&) e onaD. 1)
¢ OV

Furthermore, the space of such functions U has the infinite dimension.

Remark 3. As follows from the proofs of Theorems 2 and 3, the generalized harmonic func-
tions U with a source GeL?, p>2, satisfying the Poincaré boundary conditions can be rep-
resented in the form of the sums Ny +U. of the logarithmic (Newtonian) potential N that is a
generalized harmonic function with the source G and harmonic functions U satisfying the
corresponding Poincaré boundary conditions.
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5. On the Riemann—Poincaré type problems for the Poisson equations. Finally, arguing
similarly to the proofs of Corollaries 9 and 10 in [10] and being based on Lemma 1 in [1] and
Lemma 1 in Section 2, correspondingly, we obtain the following consequences.

Corollary 2. Let D be a domainin C whose boundary consists of a finite number of mutual-
ly disjoint Jordan curves, B:0D —R and C:0D — R be functions that are measurable with
respect to the logarithmic capacity, and o.:0D — 6D be a homeomorphism keeping components of
oD such that o and o' have the Luzin (N') -property with respect to the logarithmic capacity.

Suppose that G:C— R isin L[P(C), p>2, with compact support, {YZ}QeaD s and {y;}ecop are
Jfamilies of Jordan arcs of the class BS in D and (C\D correspondingly. Then there exist gene-
ralized harmonic functions u*: D —> R and u~ :C\ D — R with the source G such that

u (a(8)=B(&)-u ()+C(&) q-e. on oD (22)

where u* (L) and uw (C) are limits of u'(z) and u (2) az z—¢ along y; and vy, corres-
pondingly.

Furthermore, the space of all such couples (u™,u”) has the infinite dimension for any such
prescribed G, B, C, o and collections {y }..op and{y;}¢cop -

In particular, we are able to obtain, from the following corollary, solutions of the problem
on gluing of the Dirichlet problem in the unit disk D and the Neumann problem outside of D
in the class of generalized harmonic functions with the source g.

Corollary 3. Let D be a domain in C whose boundary consists of a finite number of mutually
disjoint Jordan curves, v:0D — C, |v(¢)|=1, be a measurable function, p:0D — 0D be a ho-
meomorphism such that B and B~ have the Luzin (N)-property, and ¢:0DxR — R satisfy the
Carathéodory conditions with respect to the logarithmic capacity.

Suppose that G:C—R isin C*, ae(0,1), with compact support, {y;}.opand {y;}.cop are
Jamilies of Jordan arcs of the class BS in D and C \ D, correspondingly. Then there exist gene-
ralized harmonic functions u” : D —>R and u” :C\ D — R with the source G such that

u (B(C)) =<P[C, [%} (C)J q.e. on D, (23)

where u* (§) and [ } (€) are limits of the functions u*(z) and —(z) as z— ¢ along y; and

V¢ » correspondingly.

Furthermore, the space of all such couples (U",U") has the infinite dimension for any such
prescribed G, v, B, ¢ and collections YZ andy,, edD.

The corresponding results on the boundary-value problems for semilinear equations of
mathematical physics in anisotropic and inhomogeneous media with arbitrary measurable data
can be proved on the basis of our factorization theorem in paper [11], cf. also [12].

This work was partially supported by grants of Ministry of Education and Science of Ukraine,
project number is 0119U100421.
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ITPO KPAVIOBI 3AJIAUI 1711 Y3ATAJIbBHEHIX
AHAJIITUYHNX TA TAPMOHIYHIX OYHKIIIN

Pob6oTa € poioBKEeHHAM A0CiZKeHb KpaitoBux 3agau Pimana, Tinbbepra, Jlipixie, [Tyankape i, sokpema, Heii-
Mama, /I KBa3ikoH(OPMHWX, aHATI THYHIX, TADMOHIUYHUX i TAK 3BAaHUX A-TapMOHIYHUX (DYHKIIIH i3 TOBITBHUMI
IPAaHUYHUMU JJAHUMU, SIKI € BUMIPIOBAHUMU BiZIHOCHO JoTapudMiuHO1 eMHOCTI. TyT BiANIOBIHI pe3yabTaTH 10-
IIMPEHO Ha y3araabHeHi aHatiTinani pynkiii £: D — C 3 ukepenoM g:9.h=ge[”, p>2,iHaysaraibHeni rap-
Moniuni @ynkuii U s gxepesnoM G : AU =G eI, p > 2. [lanuil niaxij sacHoBaHUil Ha reoMeTpUYHii (TeopeTHKo-
dyukmionanbHiN) iHTepIpeTartii KpailoBUX 3a7a4 y TOPIBHAHHI 3 KJIACHYHUM OTIEPATOPHNM ITIXOZ0OM Y Teopii
PUYII. BeranossieHi Bi/inoBiiHi TeopeMu icHYBaHHS s 33/1a4i [lyankape /s TOXiIHOT 32 HAITPSIMKOM 1, 30Kpe-
Ma, [ 3anaui Helimana auia piBusanns [lyaccona AU = G 3 10BUIBHUMY IPAaHMYHUMMU JJAHUMU, 10 € BUMIpIOBa-
HUMHM BiZIHOCHO JioTapudMiuHOT eMHOCTI. Takok po3ryIsiHyTO JieKijabKa 3MilIaHUX IpaHnYHUX 3a71a4. 11 pe3ysib-
TaTH MOXKYTDb OYTh TAKOK 3aCTOCOBaHI 0 HAMIBIIHITHUX PIBHSHD MaTEMaTHYHOI (DI3MKHU B aHI30TPOTTHUX Ta He-
OJTHOPIJTHUX CePe/IOBUIIIAX.

Kmouogi crosa: xpaiiosi sadaui [lyanxape i Hetlimana, ysazanvneni ananimuuni Qynxuyii, r0zapudmivna emmuicme,
Y3azanveni 2apmMoHiuni Qynkyii, 102apumivnuti nomenyial.
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