Theory of Stochastic Processes, 2006, № 3-4
Постійний URI цієї колекціїhttps://nasplib.isofts.kiev.ua/handle/123456789/3057
ЗМІСТ
Teugels J.L., Ramsey H.The encyclopedia of actuarial science
Bondarenko A.
On extension of the limit theorem of renewal theory and its application
Chernecky V.
Exact non-ruin probabilities in infinite time
Dhaene J., Kukush A., Pupashenko M.
On the characterization of premium principle with respect to pointwise comonotonicity
Kozachenko Y., Rozora I.
Application of the theory of square-Gaussian processes to simulation of stochastic processes
Kozachenko Y., Vasylyk O.
Simulation of fractional Brownian motion with given reliability and accuracy in C([0, 1])
Kukush A., Polekha M.
A googness of-fit-test for a multivariate errors-in-variables model
Kukush A.G., Mishura Yu.S., Shevchenko G.M.
On reselling of European option
Moklyachuk M., Masyutka A.
Robust estimation problems for stochastic processes
Moklyachuk M., Zrazhevsky A.
Analysis and forecasting of self-similar financial time series
Olenko A., Klykavka B.
Some properties of weight functions in tauberian theorems
Perestyuk M.
On uniform convergence of wavelet expansions of some random processes
Ponomarenko O., Perunk Y.
Spectral analysis of some classes of multivariate random fields with isotropic property
Silvestrov D.S., Drozdenko M.O.
Necessary and sufficient conditions for weak convergence of first-rare-event times for semi-Markov processes. I
Silvestrov D.S., Drozdenko M.O.
Necessary and sufficient conditions for weak convergence of first-rare-event times for semi-Markov processes. II
Silvestrov D., Teugels J., Masol V., Malyarenko A.
Innovation methods, algorithms, and software for analysis of reinsurance contracts
Stenberg F., Manca R., Silvestrov D.
Semi-Markov reward models for disability insurance
Turchyn Y.
On accuracy of simulation of gaussian stationary processes in L2([0, T])
Yamnenko R.
Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion