Daugavet Centers

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України

Анотація

An operator G: X → Y is said to be a Daugavet center if ||G + T|| = ||G|| + ||T|| for every rank-1 operator T: X → Y . The main result of the paper is: if G: X →! Y is a Daugavet center, Y is a subspace of a Banach space E, and J : Y → E is the natural embedding operator, then E can be equivalently renormed in such a way that J ○ G : X → E is also a Daugavet center. This result was previously known for the particular case X = Y, G = Id and only in separable spaces. The proof of our generalization is based on an idea completely di®erent from the original one. We also give some geometric characterizations of the Daugavet centers, present a number of examples, and generalize (mostly in straightforward manner) to Daugavet centers some results known previously for spaces with the Daugavet property.

Опис

Теми

Цитування

Daugavet Centers / T. Bosenko, V. Kadets // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 3-20. — Бібліогр.: 14 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced