Эволюционно-фрагментарная модель задачи трассировки
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут кібернетики ім. В.М. Глушкова НАН України
Анотація
Рассматривается один из вариантов задачи трассировки на плоской целочисленной решетке. Показано, что эта задача может быть представлена как задача поиска слов с определенными свойствами над конечным алфавитом. В свою очередь задача поиска оптимальных слов может рассматриваться как задача с фрагментарной структурой. Получена комбинаторная оценка множества допустимых слов, установлена нижняя оценка плотности в задаче поиска оптимальной трассировки с критерием плотности. Построена эволюционно-фрагментарная модель задачи трассировки, для малых размеров получены оптимальные и близкие к оптимальным решения этой задачи.
Розглянуто один з варіантів задачі трасування на плоскій цілочисловій гратці. Показано, що цю задачу можна сформулювати як задачу пошуку слів з певними властивостями над кінцевим алфавітом. У свою чергу, задача пошуку оптимальних слів може розглядатися як задача з фрагментарною структурою. Отримано комбінаторну оцінку множини допустимих слів, встановлено нижню оцінку щільності в задачі пошуку оптимального трасування з критерієм щільності. Побудовано еволюційно-фрагментарну модель задачі трасування, для малих розмірів отримано оптимальні і близькі до оптимальних розв’язки цієї задачі.
In this paper we consider one of the variants of the routing problem on a plane integer lattice. It is shown that this problem can be represented as a problem of searching for words with certain properties over a finite alphabet. In turn, the problem of finding optimal words can be considered as a problem with fragmentary structure. A combinatorial estimate for set of feasible words was derived and the lower bound of the density was established for the problem of finding optimal line density. An evolutionary-fragmentary model of the routing problem is constructed. Optimal and near-optimal solutions are obtained for this problem for small sizes.
Розглянуто один з варіантів задачі трасування на плоскій цілочисловій гратці. Показано, що цю задачу можна сформулювати як задачу пошуку слів з певними властивостями над кінцевим алфавітом. У свою чергу, задача пошуку оптимальних слів може розглядатися як задача з фрагментарною структурою. Отримано комбінаторну оцінку множини допустимих слів, встановлено нижню оцінку щільності в задачі пошуку оптимального трасування з критерієм щільності. Побудовано еволюційно-фрагментарну модель задачі трасування, для малих розмірів отримано оптимальні і близькі до оптимальних розв’язки цієї задачі.
In this paper we consider one of the variants of the routing problem on a plane integer lattice. It is shown that this problem can be represented as a problem of searching for words with certain properties over a finite alphabet. In turn, the problem of finding optimal words can be considered as a problem with fragmentary structure. A combinatorial estimate for set of feasible words was derived and the lower bound of the density was established for the problem of finding optimal line density. An evolutionary-fragmentary model of the routing problem is constructed. Optimal and near-optimal solutions are obtained for this problem for small sizes.
Опис
Теми
Системный анализ
Цитування
Эволюционно-фрагментарная модель задачи трассировки / И.В. Козин, Е.В. Кривцун, В.П. Пинчук // Кибернетика и системный анализ. — 2015. — Т. 51, № 3. — С. 125-131. — Бібліогр.: 10 назв. — рос.