On a model semilinear elliptic equation in the plane

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

Assume that Ω is a regular domain in the complex plane C and A(z) is symmetric 2 × 2 matrix with measurable entries, det A = 1 and such that 1/K|ξ|² ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. We study the blow-up problem for a model semilinear equation div (A(z)∇u) = e^u in Ω and show that the well-known Liouville–Bieberbach function solves the problem under an appropriate choice of the matrix A(z). The proof is based on the fact that every regular solution u can be expressed as u(z) = T(ω(z)) where ω : Ω → G stands for quasiconformal homeomorphism generated by the matrix A(z) and T is a solution of the semilinear weihted Bieberbach equation ∆T = m(w)e^T in G. Here the weight m(w) is the Jacobian determinant of the inverse mapping ω⁻¹(w).

Опис

Теми

Цитування

On a model semilinear elliptic equation in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2016. — Т. 13, № 1. — С. 91-105. — Бібліогр.: 18 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced