Natural and Projectively Invariant Quantizations on Supermanifolds

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

The existence of a natural and projectively invariant quantization in the sense of P. Lecomte [Progr. Theoret. Phys. Suppl. (2001), no. 144, 125-132] was proved by M. Bordemann [math.DG/0208171], using the framework of Thomas-Whitehead connections. We extend the problem to the context of supermanifolds and adapt M. Bordemann's method in order to solve it. The obtained quantization appears as the natural globalization of the pgl(n+1|m)-equivariant quantization on Rn|m constructed by P. Mathonet and F. Radoux in [arXiv:1003.3320]. Our quantization is also a prolongation to arbitrary degree symbols of the projectively invariant quantization constructed by J. George in [arXiv:0909.5419] for symbols of degree two.

Опис

Теми

Цитування

Natural and Projectively Invariant Quantizations on Supermanifolds / T. Leuther, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced