A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We consider compact Grassmann manifolds G/K over the real, complex or quaternionic numbers whose spherical functions are Heckman-Opdam polynomials of type BC. From an explicit integral representation of these polynomials we deduce a sharp Mehler-Heine formula, that is an approximation of the Heckman-Opdam polynomials in terms of Bessel functions, with a precise estimate on the error term. This result is used to derive a central limit theorem for random walks on the semi-lattice parametrizing the dual of G/K, which are constructed by successive decompositions of tensor powers of spherical representations of G. The limit is the distribution of a Laguerre ensemble in random matrix theory. Most results of this paper are established for a larger continuous set of multiplicity parameters beyond the group cases.

Опис

Теми

Цитування

A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced