Constructing Involutive Tableaux with Guillemin Normal Form
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Involutivity is the algebraic property that guarantees solutions to an analytic and torsion-free exterior differential system or partial differential equation via the Cartan-Kähler theorem. Guillemin normal form establishes that the prolonged symbol of an involutive system admits a commutativity property on certain subspaces of the prolonged tableau. This article examines Guillemin normal form in detail, aiming at a more systematic approach to classifying involutive systems. The main result is an explicit quadratic condition for involutivity of the type suggested but not completed in Chapter IV, § 5 of the book Exterior Differential Systems by Bryant, Chern, Gardner, Goldschmidt, and Griffiths. This condition enhances Guillemin normal form and characterizes involutive tableaux.
Опис
Теми
Цитування
Constructing Involutive Tableaux with Guillemin Normal Form / A.D. Smith // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 9 назв. — англ.