Quantum Analogs of Tensor Product Representations of su(1,1)

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We study representations of Uq(su(1,1)) that can be considered as quantum analogs of tensor products of irreducible *-representations of the Lie algebra su(1,1). We determine the decomposition of these representations into irreducible *-representations of Uq(su(1,1)) by diagonalizing the action of the Casimir operator on suitable subspaces of the representation spaces. This leads to an interpretation of the big q-Jacobi polynomials and big q-Jacobi functions as quantum analogs of Clebsch-Gordan coefficients.

Опис

Теми

Цитування

Quantum Analogs of Tensor Product Representations of su(1,1) / W. Groenevelt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced