Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We prove the Doran-Harder-Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi-Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi-Yau manifold of X can be constructed by gluing the two mirror Landau-Ginzburg models of the quasi-Fano manifolds. The two crucial ideas in our proof are to obtain a complex structure by gluing the underlying affine manifolds and to construct the theta functions from the Landau-Ginzburg superpotentials.
Опис
Теми
Цитування
Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves / A. Kanazawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ.