Period Matrices of Real Riemann Surfaces and Fundamental Domains
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
For some positive integers g and n we consider a subgroup Gg,n of the 2g-dimensional modular group keeping invariant a certain locus Wg,n in the Siegel upper half plane of degree g. We address the problem of describing a fundamental domain for the modular action of the subgroup on Wg,n. Our motivation comes from geometry: g and n represent the genus and the number of ovals of a generic real Riemann surface of separated type; the locus Wg,n contains the corresponding period matrix computed with respect to some specific basis in the homology. In this paper we formulate a general procedure to solve the problem when g is even and n equals one. For g equal to two or four the explicit calculations are worked out in full detail.
Опис
Теми
Цитування
Period Matrices of Real Riemann Surfaces and Fundamental Domains / P. Giavedoni // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ.