On divergence and sums of derivations

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

Let K be an algebraically closed field of characteristic zero and A a field of algebraic functions in n variables over K. (i.e. A is a finite dimensional algebraic extension of the field K(x1,…,xn) ). If D is a K-derivation of A, then its divergence divD is an important geometric characteristic of D (D can be considered as a vector field with coefficients in A). A relation between expressions of divD in different transcendence bases of A is pointed out. It is also proved that every divergence-free derivation D on the polynomial ring K[x,y,z] is a sum of at most two jacobian derivation.

Опис

Теми

Цитування

On divergence and sums of derivations / E. Chapovsky, O. Shevchyk // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 99-105. — Бібліогр.: 5 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced