Нарізно неперервні відображення зі значеннями в не локально опуклих просторах
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Доказано, что для метризуемого пространства X, совершенно нормального пространства Y и сильно σ-метризуемого топологического векторного пространства Z, имеющего исчерпывание, которое состоит из замкнутых метризуемых сепарабельных линейно связных и локально линейно связных подпространств Zm пространства Z, набор (X,Y,Z) является тройкой Лебега.
We prove that the collection (X,Y,Z) is the Lebesgue triple if X is a metrizable space, Y is a perfectly normal space, and Z is a strongly σ-metrizable topological vector space with stratification (Zm) m=1,∞, where, for every m ∊ N, Zm is a closed metrizable separable subspace of Z arcwise connected and locally arcwise connected.
We prove that the collection (X,Y,Z) is the Lebesgue triple if X is a metrizable space, Y is a perfectly normal space, and Z is a strongly σ-metrizable topological vector space with stratification (Zm) m=1,∞, where, for every m ∊ N, Zm is a closed metrizable separable subspace of Z arcwise connected and locally arcwise connected.
Опис
Теми
Статті
Цитування
Нарізно неперервні відображення зі значеннями в не локально опуклих просторах / О.О. Карлова, В.К. Маслюченко // Український математичний журнал. — 2007. — Т. 59, № 12. — С. 1639–1646. — Бібліогр.: 14 назв. — укр.