Множина обмежених розв'язків лінійної слабкозбуреної системи
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Отримано умови появи з точки ε = 0 множини обмежених на всiй осi R розв’язкiв слабкозбурених систем лiнiйних звичайних диференцiальних рiвнянь у випадку, коли вiдповiдна незбурена
однорiдна лiнiйна диференцiальна система є експоненцiально-дихотомiчною на пiвосях R+ та
R−. Вказано кiлькiсть лiнiйно незалежних обмежених на R розв’язкiв та наведено алгоритм їх
побудови
For weakly perturbed systems of linear differential equations, we find conditions for the point ε = 0 to bifurcate into a set of solutions that are bounded on the whole line R in the case where the corresponding unperturbed homogeneous linear differential system is exponentially dichotomous on the half-lines R+ and R−. We determine the number of linearly independent solutions that are bounded on R and give an algorithm for finding these solutions
For weakly perturbed systems of linear differential equations, we find conditions for the point ε = 0 to bifurcate into a set of solutions that are bounded on the whole line R in the case where the corresponding unperturbed homogeneous linear differential system is exponentially dichotomous on the half-lines R+ and R−. We determine the number of linearly independent solutions that are bounded on R and give an algorithm for finding these solutions
Опис
Теми
Цитування
Множина обмежених розв'язків лінійної слабкозбуреної системи / А.О. Бойчук // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 309-318. — Бібліогр.: 8 назв. — укр.