On the number of topologies on a finite set
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T₀ topologies on the set X. In the present paper, we prove that for any prime p, T(pᵏ) ≡ k + 1 (mod p), and that for each natural number n there exists a unique k such that T(p + n) ≡ k (mod p). We calculate k for n = 0, 1, 2, 3, 4. We give an alternative proof for a result of Z. I. Borevich to the effect that T₀(p + n) ≡ T₀(n + 1) (mod p).
Опис
Теми
Цитування
On the number of topologies on a finite set / M.Y. Kizmaz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 50–57. — Бібліогр.: 8 назв. — англ.