On the number of topologies on a finite set

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T₀ topologies on the set X. In the present paper, we prove that for any prime p, T(pᵏ) ≡ k + 1 (mod p), and that for each natural number n there exists a unique k such that T(p + n) ≡ k (mod p). We calculate k for n = 0, 1, 2, 3, 4. We give an alternative proof for a result of Z. I. Borevich to the effect that T₀(p + n) ≡ T₀(n + 1) (mod p).

Опис

Теми

Цитування

On the number of topologies on a finite set / M.Y. Kizmaz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 50–57. — Бібліогр.: 8 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced