Sets of prime power order generators of finite groups
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
A subset X of prime power order elements of a finite group G is called pp-independent if there is no proper subset Y of X such that 〈Y,Ф(G)〉 = 〈X,Ф(G)〉, where Ф(G) is the Frattini subgroup of G. A group G has property Bpp if all pp-independent generating sets of G have the same size. G has the pp-basis exchange property if for any pp-independent generating sets B₁,B₂ of G and x ∈ B₁ there exists y ∈ B₂ such that (B₁ \ {x}) ∪ {y} is a pp-independent generating set of G. In this paper we describe all finite solvable groups with property Bpp and all finite solvable groups with the pp-basis exchange property.
Опис
Теми
Цитування
Sets of prime power order generators of finite groups / A. Stocka // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 129–138. — Бібліогр.: 12 назв. — англ.