On the Dirichlet problem for A-harmonic functions

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Видавничий дім "Академперіодика" НАН України

Анотація

We study the Dirichlet boundary value problem with continuous boundary data for the A-harmonic equations div[A grad u] = 0 in an arbitrary bounded domain D of the complex plane С with no boundary component degenerated to a single point. We provide integral criteria, including the BMO and FMO criteria expressed in terms of A (z), for the existence of weak solutions to the problem. We also discuss the connections between A-harmonic functions and potential theory.
Для А-гармонічного рівняння досліджено задачу Діріхле з неперервними межовими даними в обмежених областях комплексної площини. Нами встановлені критерії існування слабких розв’язків поставленої задачі у довільній обмеженій області без вироджених межових компонент в сенсі розподiлiв, здійснених у термінах умов на матричний коефіцієнт рівняння типу BMO (функцій обмеженого середнього коливання) і FMO (функцій скінченного середнього коливання). Наведено також ряд інтегральних критеріїв типу Кальдерона—Зигмунда, Лехто та Орлича. Відповідні приклади показують, що умова невиродженості межових компонент області є не лише достатньою, але й необхідною умовою розв’язності задачі Діріхле навіть для гармонічних функцій. Останнє узгоджується з відомою умовою Вінера. Показано, що отримані розв’язки мають зображення у вигляді композиції гармонічних розв’язків відповідних задач Діріхле і регулярних гомеоморфних розв’язків рівнянь Бельтрамі всієї комплексної площини з відповідними комплексними коефіцієнтами, які задовольняють гідродинамічну умову нормування у нескінченно віддаленій точці.

Опис

Теми

Математика

Цитування

On the Dirichlet problem for A-harmonic functions / V.Ya. Gutlyanskiĭ, V.I. Ryazanov, E.A. Sevost’yanov, E.Yakubov // Доповіді Національної академії наук України. — 2023. — № 4. — С. 11-19. — Бібліогр.: 10 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced