Lagrangian Grassmannians and Spinor Varieties in Characteristic Two
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
The vector space of symmetric matrices of size n has a natural map to a projective space of dimension 2ⁿ −1 given by the principal minors. This map extends to the Lagrangian Grassmannian LG(n, 2n), and over the complex numbers, the image is defined, as a set, by quartic equations. In case the characteristic of the field is two, it was observed that, for n=3,4, the image is defined by quadrics. In this paper, we show that this is the case for any n and that, moreover, the image is the spinor variety associated to Spin(2n+1). Since some of the motivating examples are of interest in supergravity and in the black-hole/qubit correspondence, we conclude with a brief examination of other cases related to integral Freudenthal triple systems over integral cubic Jordan algebras.
Опис
Теми
Цитування
Lagrangian Grassmannians and Spinor Varieties in Characteristic Two / B. van Geemen, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 41 назв. — англ.