About Bounds for Eigenvalues of the Laplacian with Density

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Let 𝑀 denote a compact, connected Riemannian manifold of dimension 𝑛 ∈ ℕ. We assume that 𝑀 has a smooth and connected boundary. Denote by 𝑔 and d𝑣𝑔, respectively, the Riemannian metric on 𝑀 and the associated volume element. Let Δ be the Laplace operator on 𝑀 equipped with the weighted volume form d𝑚:= e⁻ʰd𝑣𝑔. We are interested in the operator Lₕ⋅ :=e⁻ʰ⁽ᵅ⁻¹⁾(Δ⋅+α𝑔(∇h, ∇⋅)), where α > 1 and 𝘩 ∈ 𝐶²(𝑀) are given. The main result in this paper states the existence of upper bounds for the eigenvalues of the weighted Laplacian Lₕ with the Neumann boundary condition if the boundary is non-empty.

Опис

Теми

Цитування

About Bounds for Eigenvalues of the Laplacian with Density. Aïssatou Mossèle Ndiaye. SIGMA 16 (2020), 090, 8 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced