The Endless Beta Integrals

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We consider a special degeneration limit ω₁ → −ω₂ (or 𝘣 → i in the context of 2𝒹 Liouville quantum field theory) for the most general univariate hyperbolic beta integral. This limit is also applied to the most general hyperbolic analogue of the Euler-Gauss hypergeometric function and its 𝑊(𝐸₇) group of symmetry transformations. Resulting functions are identified as hypergeometric functions over the field of complex numbers related to the SL(2, ℂ) group. A new, similar nontrivial hypergeometric degeneration of the Faddeev modular quantum dilogarithm (or hyperbolic gamma function) is discovered in the limit ω₁ → ω₂ (or 𝘣 → 1).

Опис

Теми

Цитування

The Endless Beta Integrals. Gor A. Sarkissian and Vyacheslav P. Spiridonov. SIGMA 16 (2020), 074, 21 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced