The Measure Preserving Isometry Groups of Metric Measure Spaces
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Bochner's theorem says that if 𝑀 is a compact Riemannian manifold with negative Ricci curvature, then the isometry group Iso(𝑀) is finite. In this article, we show that if (𝘟, 𝘥, 𝑚) is a compact metric measure space with synthetic negative Ricci curvature in Sturm's sense, then the measure-preserving isometry group Iso(𝘟, 𝘥, 𝑚) is finite. We also give an effective estimate on the order of the measure-preserving isometry group for a compact weighted Riemannian manifold with negative Bakry-Émery Ricci curvature, except for small portions.
Опис
Теми
Цитування
The Measure Preserving Isometry Groups of Metric Measure Spaces. Yifan Guo. SIGMA 16 (2020), 114, 14 pages