The Measure Preserving Isometry Groups of Metric Measure Spaces

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Bochner's theorem says that if 𝑀 is a compact Riemannian manifold with negative Ricci curvature, then the isometry group Iso(𝑀) is finite. In this article, we show that if (𝘟, 𝘥, 𝑚) is a compact metric measure space with synthetic negative Ricci curvature in Sturm's sense, then the measure-preserving isometry group Iso(𝘟, 𝘥, 𝑚) is finite. We also give an effective estimate on the order of the measure-preserving isometry group for a compact weighted Riemannian manifold with negative Bakry-Émery Ricci curvature, except for small portions.

Опис

Теми

Цитування

The Measure Preserving Isometry Groups of Metric Measure Spaces. Yifan Guo. SIGMA 16 (2020), 114, 14 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced