Second-Order Differential Operators in the Limit Circle Case

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We consider symmetric second-order differential operators with real coefficients such that the corresponding differential equation is in the limit circle case at infinity. Our goal is to construct the theory of self-adjoint realizations of such operators by analogy with the case of Jacobi operators. We introduce a new object, the quasiresolvent of the maximal operator, and use it to obtain a very explicit formula for the resolvents of all self-adjoint realizations. In particular, this yields a simple representation for the Cauchy-Stieltjes transforms of the spectral measures playing the role of the classical Nevanlinna formula in the theory of Jacobi operators.

Опис

Теми

Цитування

Second-Order Differential Operators in the Limit Circle Case, Dmitri R. Yafaev, SIGMA 17 (2021), 077, 13 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced