Чебышевское приближение функций суммой многочлена и выражения с нелинейным параметром и интерполированием в крайних точках отрезка

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут кібернетики ім. В.М. Глушкова НАН України

Анотація

Встановлено достатні умови існування чебишовського (рівномірного, мінімаксного) наближення функції сумою поліному й виразу з нелінійним параметром із найменшою абсолютною похибкою й інтерполюванням у крайніх точках відрізка. Запропоновано алгоритм визначення параметрів такого наближення сумою поліному й степеня за схемою Ремеза. Обґрунтовано застосування ітераційного методу для обчислення значення нелінійного параметра.
Sufficient existence conditions are established for uniform Chebyshev (minimax) approximation of a function by the sum of a polynomial and an expression with a nonlinear parameter for the case of minimizing absolute error and interpolating at interval endpoints. An algorithm for determining the parameters of such an approximation using the Remez scheme is proposed. The application of the iterative method to the calculation of the nonlinear parameter is founded.

Опис

Теми

Системный анализ

Цитування

Чебышевское приближение функций суммой многочлена и выражения с нелинейным параметром и интерполированием в крайних точках отрезка / В.В. Скопецкий, П.С. Малачивский // Кибернетика и системный анализ. — 2009. — № 1. — С. 64-75. — Бібліогр.: 7 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced