On n-Tuples of Subspaces in Linear and Unitary Spaces

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We study a relation between brick n-tuples of subspaces of a finite dimensional linear space, and irreducible n-tuples of subspaces of a finite dimensional Hilbert (unitary) space such that a linear combination, with positive coefficients, of orthogonal projections onto these subspaces equals the identity operator. We prove that brick systems of one-dimensional subspaces and the systems obtained from them by applying the Coxeter functors (in particular, all brick triples and quadruples of subspaces) can be unitarized. For each brick triple and quadruple of subspaces, we describe sets of characters that admit a unitarization.

Опис

Теми

Цитування

On n-Tuples of Subspaces in Linear and Unitary Spaces / Yu.S. Samoilenko, D.Yu. Yakymenko // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 1. — С. 48–60. — Библиогр.: 34 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced