Усредненная модель диффузии в локально периодической пористой среде с нелинейным поглощением на границе

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Видавничий дім "Академперіодика" НАН України

Анотація

Рассмотрена краевая задача, описывающая процесс стационарной диффузии в локально периодической пористой среде с нелинейным поглощением на границе. Изучено асимптотическое поведение решения, когда масштаб микроструктуры среды ε → 0. Построено усредненное уравнение, описывающее главный член асимптотики, для коэффициентов которого (эффективных характеристик среды) получены явные формулы.
Розглянуто крайову задачу, що описує процес стацiонарної дифузiї в локально перiодичному пористому середовищi з нелiнiйним поглинанням на межi. Вивчено асимптотичну поведiнку розв’язку, коли масштаб мiкроструктури середовища ε → 0. Побудовано усереднене рiвняння, що описує головний член асимптотики, для коефiцiєнтiв якого (ефективних характеристик середовища) отриманi явнi формули.
We consider a boundary-value problem describing the process of stationary diffusion in a locally periodic porous medium with nonlinear absorption on the boundary. We study the asymptotic behavior of the solution, when the scale of the microstructure of the medium ε → 0. We have constructed the homogenized equation describing the main term of the asymptotics and deduced explicit formulas for effective characteristics of a medium that are coefficients of this equation.

Опис

Теми

Математика

Цитування

Усредненная модель диффузии в локально периодической пористой среде с нелинейным поглощением на границе / М.В. Гончаренко, Л.А. Хилькова // Доповiдi Нацiональної академiї наук України. — 2016. — № 6. — С. 15-19. — Бібліогр.: 9 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced