A Note on Operator Equations Describing the Integral

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України

Анотація

We study operator equations generalizing the chain rule and the substitution rule for the integral and the derivative of the type f ○ g + c = I (Tf ○ g ∙ Tg), f, g є C¹(R), (1) where T : C¹ (R) → C(R) and where I is defined on C(R). We consider suitable conditions on I and T such that (1) is well-defined and, after reformulating (1) as V (f ○ g) = Tf ○ g ∙ Tg, f, g є C¹(R) (2) with V : C¹ (R) → C(R), give the general form of T, V and I. Simple initial conditions then guarantee that the derivative and the integral are the only solutions for T and I. We also consider an analogue of the Leibniz rule and study surjectivity properties there.
Изучаем операторные уравнения, соответствующие цепному правилу и замене переменных f ○ g + c = I (Tf ○ g ∙ Tg), f, g є C¹(R), (1) где T : C¹(R) → C(R) и где I определен на C(R). Рассматриваем соответствующие условия на I и T такие, что (1) корректно определено и, после перенормировки (1) в форме V (f ○ g) = Tf ○ g ∙ Tg, f, g є C¹1(R) (2) с оператором V : C¹(R) → C(R), мы приводим общую форму T, V и I. Простые начальные условия гарантируют, что производная и интеграл являются единственными решениями для T и I. Также рассматриваем операторной аналог для правила Лейбница и изучаем его сюръективность.

Опис

Теми

Цитування

A Note on Operator Equations Describing the Integral / H. König, V. Milman // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 51-58. — Бібліогр.: 4 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced